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A B S T R A C T

Controllable Pareto front learning (CPFL) approximates the Pareto optimal solution set and then locates a non-
dominated point with respect to a given reference vector. However, decision-maker objectives were limited
to a constraint region in practice, so instead of training on the entire decision space, we only trained on the
constraint region. Controllable Pareto front learning with Split Feasibility Constraints (SFC) is a way to find
the best Pareto solutions to a split multi-objective optimization problem that meets certain constraints. In
the previous study, CPFL used a Hypernetwork model comprising multi-layer perceptron (Hyper-MLP) blocks.
Transformer can be more effective than previous architectures on numerous modern deep learning tasks
in certain situations due to their distinctive advantages. Therefore, we have developed a hyper-transformer
(Hyper-Trans) model for CPFL with SFC. We use the theory of universal approximation for the sequence-to-
sequence function to show that the Hyper-Trans model makes MED errors smaller in computational experiments
than the Hyper-MLP model.
1. Introduction

Multi-objective optimization (MOO), an advanced solution for
modern optimization problems, is increasingly driven by the need
to find optimal solutions in real-world situations with multiple cri-
teria. Addressing the complex trade-offs inherent in decision-making
problems resolves the challenges of simultaneously optimizing con-
flicting objectives on a shared optimization variable set. The advan-
tages of MOO have been recognized in several scientific domains,
including chemistry (Cao et al., 2019), biology (Lambrinidis & Tsantili-
Kakoulidou, 2021), and finance, specifically investing (Vuong & Thang,
2023). Specifically, its recent accomplishment in deep multitask learn-
ing (Sener & Koltun, 2018) has attracted attention.

Split Feasibility Problem (SFP) is an idea that Censor and Elfving
(1994) initially proposed. It requires locating a point in a nonempty
closed convex subset in one space whose image is in another nonempty
closed convex subset in the image space when subjected to a particular
operator. While projection algorithms that are frequently employed
have been utilized to solve SFP, they face challenges associated with
computation, convergence on multiple sets, and strict conditions. The
SFP is used in many real-world situations, such as signal processing,
image reconstruction (Byrne, 2003; Stark, Yang, & Yang, 1998), and
intensity-modulated radiation therapy (Brooke, Censor, & Gibali, 2021;
Censor, Elfving, Kopf, & Bortfeld, 2005).
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It is noteworthy that our work is the first to consider the connection
between SFP and CPFL. Specifically, we can consider the solution set
of SFP to be the Pareto optimal solution set of the corresponding MOP.
From this, we have a multi-objective optimization problem with a split
feasibility constraint. This problem has not been studied before because
the Pareto solution set is usually a non-convex set with a complex
structure (Kim & Thang, 2013). Previous methods tackled the entire
Pareto front; one must incur an impracticably high cost due to the
exponential growth in the number of solutions required in proportion
to the number of objectives. Several proposed algorithms, such as evo-
lutionary and genetic algorithms, aim to approximate the Pareto front
partially (Jangir, Heidari, & Chen, 2021). Despite these algorithms’
potential, only small-scale tasks (Murugan, Kannan, & Baskar, 2009)
can be used in practice. Moreover, these methods limit adaptability
because the decision-maker cannot flexibly adjust priorities in real-
time. After all, the corresponding solutions are only sometimes readily
available and must be recalculated for optimal performance (Lin, Zhen,
Li, Zhang, & Kwong, 2019; Mahapatra & Rajan, 2021; Momma, Dong,
& Liu, 2022). Based on the self-attention mechanism (Vaswani et al.,
2017) to clarify the trade-offs between objectives in multi-objective
optimization problems and the theory of sequence-to-sequence models
behind the transformer (Jiang, Li, Li, & Wang, 2023; Yun, Bhojanapalli,
Rawat, Reddi, & Kumar, 2019). We developed a Hyper-transformer
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Fig. 1. Pareto Front Learning.

model to solve the Controllable Pareto Front Learning problem with
Split Feasibility Constraints.

Our main contributions include:

• In this study, we express a split multi-objective optimization
problem. From there, we focus on solving the controllable Pareto
front learning problem with split feasibility constraints based on
scalarization theory and the split feasibility problem. In reality,
when decision-makers want their goals to be within the area
limited by bounding boxes, this allows them to control resources
and provide more optimal criteria for the Pareto optimal solution
set.

• We propose a novel hypernetwork architecture based on a trans-
former encoder block for the controllable Pareto front learning
problem with split feasibility constraints. Our proposed model
shows superiority over MLP-based designs for multi-objective
optimization and multi-task learning problems.

• We also integrate joint input and a mixture of expert archi-
tectures to enhance the hyper-transformer network for learning
disconnected Pareto front. This helps bring great significance to
promoting other research on the controllable disconnected Pareto
front of the hypernetwork.

Summarizing, the remaining sections of the paper are structured
in the following manner: Section 2 will summarize the shortcomings
of existing work. Section 3 will provide an overview of the founda-
tional knowledge required for multi-objective optimization. Section 4
presents the optimization problem over the Pareto set with splitting
feasibility box constraints. Section 5 describes the optimization problem
over the Pareto set as a controllable Pareto front learning problem
using a hypernetwork, and we also introduce a hypernetwork based
on the Transformer model (Hyper-Transformer). Section 6 explains the
two fundamental models used in the Hyper-Transformer architecture
within Disconnected Pareto Front Learning. In Section 7, we apply the
proposed techniques to Multi-task learning, and Section 8 will detail the
experimental synthesis, present the results, analyze the performance of
the proposed model, and implement additional experiments. The last
section addresses the findings and potential future endeavors.

2. Related works

Researchers have raised recent inquiries regarding the approxima-
bility of the solution to the priority vector. While prior research has
suggested using a hypernetwork to approximate the entire Pareto
front (Hoang, Le, Tuan, & Thang, 2023; Lin, Yang, Zhang, & Kwong,
2 
Fig. 2. Controllable Pareto Front Learning.

Fig. 3. Controllable Pareto Front Learning with Split Feasibility Constraints.

2020; Navon, Shamsian, Chechik, & Fetaya, 2020), Pareto front learn-
ing (PFL) algorithms are incapable of generating solutions that precisely
match the reference vectors input into the hypernetwork. The paper
on controllable Pareto front learning with complete scalarization func-
tions (Tuan, Hoang, Le, & Thang, 2023) explains how hypernetworks
create precise connections between reference vectors and the corre-
sponding Pareto optimal solution. The term ‘‘controllable’’ refers to the
adjustable trade-off between objectives with respect to the reference
vector. In such a way, one can find an efficient solution that satisfies
his or her desired trade-off.

In Fig. 1, Pareto Front Learning uses a hypernetwork to approximate
the entire Pareto front, including dominated points. In Fig. 2, Control-
lable Pareto Front Learning with Completed Scalarization Function uses
a single hypernetwork model, mapping any given preference vector to
its corresponding solution on the Pareto front; these solutions may not
be unique. However, in Fig. 3, Controllable Disconnected Pareto Front
Learning with Split Feasibility Constraints by a Robust Hypernetwork
helps avoid dominated points.

Before our research, Raychaudhuri et al. (2022) exploited hyper-
networks to achieve a controllable trade-off between task performance
and network capacity in multi-task learning. The network architec-
ture, therefore, can dynamically adapt to the compute budget vari-
ation. Chen et al. (2023) suggests a controllable multi-objective re-
ranking (CMR) method that uses a hypernetwork to create parameters
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for a re-ranking model based on different preference weights. In this
way, CMR can adapt the preference weights according to the changes
in the online environment without any retraining. These approaches,
however, only apply to the multi-task learning scenario and require a
complicated training paradigm. Moreover, they do not guarantee the
exact mapping between the preference vector from user input and the
optimal Pareto point.

Primarily, problems involving entirely connected Pareto fronts are
the focus of the current research. Unfortunately, this is unrealistic
in real-world optimization scenarios (Ishibuchi, He, & Shang, 2019),
whereas the performance can significantly deteriorate when the PF
consists of disconnected segments. If we use the most recent surrogate
model’s regularity information, we can see that the PFs of real-world
applications are often shown as disconnected, incomplete, degenerated,
and badly scaled. This is partly because the relationships between
objectives are often complicated and not linear. Chen and Li (2023)
proposed a data-driven EMO algorithm based on multiple-gradient
descent to explore promising candidate solutions. It consists of two dis-
tinctive components: the MGD-based evolutionary search and the Infill
criterion. While the D2EMO/MGD method demonstrated strong perfor-
mance on specific benchmarking challenges involving unconnected PF
segments, it needs more computational efficiency and flexibility to meet
real-time system demands. In our research, we developed two different
neural network architectures to help quickly learn about disconnected
PF problems with split feasibility constraints.

3. Preliminaries

Multi-objective optimization aims to find 𝐱 ∈ 𝑋 to optimize 𝑚
objective functions:

min
𝐱∈𝑋

 (𝐱), (MOP)

where  (⋅) ∶ 𝑋 → 𝑌 ⊂ R𝑚, (𝐱) = {𝑓1 (𝐱) ,… , 𝑓𝑚 (𝐱)}, 𝑋 ⊂ R𝑛

is nonempty convex set, and objective functions 𝑓𝑖(⋅) ∶ R𝑛 → R,
𝑖 = 1,… , 𝑚 are convex functions and bounded below on 𝑋. We denote
𝑌 ∶=  (𝑋) = {𝐲 ∈ R𝑚

|∃𝐱 ∈ R𝑛, (𝐱) = 𝐲} the outcome set or the value
set of Problem (MOP).

Definition 3.1 (Dominance). A solution 𝐱1 dominates 𝐱2 if 𝑓𝑖
(

𝐱1
)

≤
𝑓𝑖

(

𝐱2
)

,∀𝑖 and 𝑓𝑖
(

𝐱1
)

≠ 𝑓𝑖
(

𝐱2
)

. Denote 
(

𝐱1
)

≺ 
(

𝐱2
)

.

efinition 3.2 (Pareto Optimal Solution). A solution 𝐱1 is called Pareto
ptimal solution (efficient solution) if ∄𝐱2 ∶ 

(

𝐱2
)

⪯ 
(

𝐱1
)

.

efinition 3.3 (Weakly Pareto Optimal Solution). A solution 𝐱1 is called
eakly Pareto optimal solution (weakly efficient solution) if ∄𝐱2 ∶
(

𝐱2
)

≺ 
(

𝐱1
)

.

efinition 3.4 (Pareto Stationary). A point 𝐱∗ is called Pareto stationary
Pareto critical point) if ∄𝑑 ∈ 𝑋 ∶ ⟨𝐽 (𝐱∗) , 𝑑⟩ < 0 or ∀𝑑 ∈ 𝑋 ∶
𝐽 (𝐱∗) , 𝑑⟩ ≮ 0, corresponding:

max
=1,…,𝑚

∇𝑓𝑖
(

𝐱∗
)⊤ 𝑑 ≥ 0, ∀𝑑 ∈ 𝑋,

here 𝐽 (𝐱∗) =
[

∇𝑓1(𝐱∗)𝑇 ,… ,∇𝑓𝑚(𝐱∗)𝑇
]𝑇 is Jacobian matrix of  at

∗.

efinition 3.5 (Pareto Set and Pareto Front). The set of Pareto optimal
olutions is called the Pareto optimal solution set, denoted by 𝑋𝐸 , and
he corresponding images in objectives space are Pareto outcome set
𝐸 ∶= {𝐲 ∈ R𝑚

|𝐲 =  (𝐱) for some 𝑥 ∈ 𝑋𝐸} or Pareto front (𝑃𝐹𝐸).
imilarly, we can define the weakly Pareto set 𝑋𝑊𝐸 and weakly Pareto
utcome set 𝑌𝑊𝐸 .

roposition 3.1. 𝐱∗ is Pareto optimal solution to Problem (MOP) ⇔ 𝐱∗

s Pareto stationary point.

3 
efinition 3.6 (Mangasarian, 1994). The differentiable function 𝑓 ∶
𝑚 → R is said to be

∙ convex on 𝑋 if for all 𝐱1, 𝐱1 ∈ 𝑋, 𝜆 ∈ [0, 1], it holds that

𝑓 (𝜆𝐱1 + (1 − 𝜆)𝐱2) ≤ 𝜆𝑓 (𝐱1) + (1 − 𝜆)𝑓 (𝐱2).

∙ pseudoconvex on 𝑋 if for all 𝐱1, 𝐱2 ∈ 𝑋, it holds that

𝑓 (𝐱2) < 𝑓 (𝐱1) ⇒ ⟨∇𝑓 (𝐱1), 𝐱2 − 𝐱1⟩ < 0.

Let 𝑓 be a numerical function defined on some open 𝑋 set in R𝑛,
et 𝐱 ∈ 𝑋, and let 𝑓 be differentiable at 𝐱. If 𝑓 is convex at 𝐱, then 𝑓 is

pseudoconvex at 𝐱, but not conversely (Mangasarian, 1994).

Definition 3.7 (Luc, 2005). A function 𝜑 is specified on convex set
⊂ R𝑛, which is called:

1. nondecreasing on 𝑋 if 𝐱1 ⪰ 𝐱2 then 𝜑(𝐱1) ≥ 𝜑(𝐱2), ∀𝐱1, 𝐱2 ∈ 𝑋.
2. weakly increasing on 𝑋 if 𝐱1 ≻ 𝐱2 then 𝜑(𝐱1) ≥ 𝜑(𝐱2), ∀𝐱1, 𝐱2 ∈ 𝑋.
3. monotonically increasing on 𝑋 if 𝐱1 ≻ 𝐱2 then 𝜑(𝐱1) > 𝜑(𝐱2),

∀𝐱1, 𝐱2 ∈ 𝑋.

The Pareto front’s structure and optimal solution set of Problem
MOP) have been investigated by numerous authors in the field (Helbig,
990; Luc, 1989; Naccache, 1978; Xunhua, 1994). In certain situations,
𝐸 is weakly connected or connected (Benoist, 2001; Luc, 1989). Con-
ectedness and contractibility are noteworthy topological properties of
hese sets due to their ability to enable an uninterrupted transition
rom one optimal solution to another along only optimal alternatives
nd their assurance of numerical algorithm stability when subjected to
imiting processes.

. Multi-objective optimization problem with split feasibility con-
traints

.1. Split multi-objective optimization problem

In 1994, Censor and Elfving (1994) first introduced the Split Fea-
ibility Problem (SFP) in finite-dimensional Hilbert spaces to model
nverse problems arising from phase retrievals and medical image
econstruction. In this setting, the problem is stated as follows:

ind 𝐱∗ ∈ 𝐶 ∶  (𝐱∗) ∈ 𝑄, (SFP)

here 𝐶 is a convex subset in R𝑛, 𝑄 is a convex subset in R𝑚, and a
mooth linear function  (⋅) ∶ R𝑛 → R𝑚. The classical linear version
f the split feasibility problem takes  (𝑥) = 𝐴𝑥 for some 𝑚 × 𝑛 matrix
(Censor & Elfving, 1994). Other typical examples of the constraint

et 𝑄 are defined by the constraints  (𝑥) = 𝑏, ‖ (𝑥) − 𝑏‖ ≤ 𝑟, or 𝑐 ≤
(𝑥) − 𝑏 ≤ 𝑑, where 𝑏, 𝑐, 𝑑, 𝑟 ∈ R𝑚.

Some solution methods were studied for Problem (SFP) when 𝐶
nd/or 𝑄 are solution sets of some other problems such as fixed point,
ptimization, variational inequality, equilibrium (Anh & Muu, 2016;
yrne, 2002; Censor, Gibali, & Reich, 2012; López, Martín-Márquez,
ang, & Xu, 2012). These works focus on the assumptions when 𝐶 is a

onvex set or  is linear (Godwin, Izuchukwu, & Mewomo, 2023; Xu,
hi, Yang, & Lange, 2018; Yen, Huyen, & Muu, 2019). According to our
urvey, there has been no research on Problem (SFP) where the set 𝐶
s the solution set of a multi-objective optimization problem.

In the paper, we study Problem (SFP) where 𝐶 is the weakly Pareto
ptimal solution set of Problem (MOP), that is

Find 𝐱∗ ∈ 𝑋𝑊𝐸 ∶  (𝐱∗) ∈ 𝑄 (SMOP)
ith 𝑋𝑊𝐸 ∶= Argmin{ (𝐱)|𝐱 ∈ 𝑋}.

his problem is called a split multi-objective optimization problem. This
roblem helps us find the Pareto optimal solution that satisfies the
onstraint  (𝑥) ∈ 𝑄, which means the corresponding non-dominated
oint in the Pareto front is located within a given region 𝑄. In a simple
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Neural Networks 179 (2024) 106571 
case, the set 𝑄 can be a box or a sphere in the image space R𝑝. In the
ase where 𝑄 is a box, the decision-maker aims to find Pareto optimal
olutions such that the objectives are achieved within a specified range
f values. For example, consider a bi-objective optimization problem
f maximizing profit and minimizing risk. The box constraint 𝑄 corre-

sponds to ensuring that the risk is within an acceptable range and the
profit achieved falls within a certain range.

It is well known that 𝑋𝑊𝐸 is, in general, a non-convex set, even in
the special case when 𝑋 is a polyhedron and  is linear on R𝑛 (Kim

Thang, 2013). Then the set 𝐶 of Problem (SFP) is non-convex
ven when (MOP) is a linear multi-objective optimization problem.
herefore, unlike previous studies, in this study, we consider the more
hallenging case of Problem (SFP) where 𝐶 is a non-convex set and  is
onlinear. This challenge is overcome using an outcome space approach
o transform the non-convex form into a convex form, in which the
onstraint sets of Problem (SFP) are convex sets. This will be presented
n Section 4.2 below.

.2. Optimizing over the solution set of problem (SMOP)

MOO aims to find Pareto optimal solutions corresponding to differ-
nt trade-offs between objectives (Ehrgott, 2005). Optimizing over the
areto set in multi-objective optimization allows us to make informed
ecisions when dealing with multiple, often conflicting, objectives. It is
ot just about finding feasible solutions but also about understanding
nd evaluating the trade-offs between different objectives to select the
ost appropriate solution based on specific criteria or preferences. In
similar vein, we consider optimizing over the Pareto set of Problem

SMOP) as follows:

in
𝐱

 ( (𝐱)) (SP)

s.t. 𝐱 ∈ 𝑋𝑊𝐸 ∶  (𝐱) ∈ 𝑄,

here the function (⋅) ∶ 𝑌 → R is a monotonically increasing function
nd pseudoconvex on 𝑌 . Recall that 𝑌 is the outcome set of 𝑋 through
he function  .

Following the outcome-space approach, the reformulation of Prob-
em (SP) is given by:

min  (𝐲) (OSP)
s.t. 𝐲 ∈ 𝑌𝑊𝐸 ∶ 𝐲 ∈ 𝑄,

here 𝑌𝑊𝐸 is the weakly Pareto outcome set of Problem (MOP).

roposition 4.1. Problem (SP) and Problem (OSP) are equivalent, i.e., if
∗ is the optimal solution of Problem (SP) then 𝐲∗ =  (𝐱∗) is the optimal
olution of Problem (OSP); conversely, if 𝐲∗ is the optimal solution of
roblem (OSP) then 𝐱∗ ∈ 𝑋 such that  (𝐱∗) ≤ 𝐲∗ and  (𝐱∗) ∈ 𝑄 is the
ptimal solution of Problem (SP).

roof. Indeed, if 𝐱∗ ∈ 𝑋𝑊𝐸 is a global optimal solution to Problem
SP), then any 𝐱 ∈ 𝑋𝑊𝐸 ∶  (𝐱) ∈ 𝑄 such that 𝑆 ( (𝐱∗)) ≤ 𝑆 ( (𝐱)). We
mply 𝑆 (𝐲∗) ≤ 𝑆 (𝐲) with ∀𝐲 ∈ 𝑌𝑊𝐸 ∶ 𝐲 ∈ 𝑄, and 𝐲∗ =  (𝐱∗) belongs to
he feasible domain of Problem (OSP). Hence, 𝐲∗ is the optimal solution
f Problem (OSP).

On the contrary, if 𝐲∗ ∈ 𝑌𝑊𝐸 is a global optimal solution to Problem
OSP), then any 𝐱∗ ∈ 𝑋 such that  (𝐱∗) ≤ 𝐲∗. We imply 𝑆 ( (𝐱∗)) ≤
(𝐲∗) ≤ 𝑆 (𝐲) with ∀𝐲 ∈ 𝑌𝑊𝐸 ∶ 𝐲 ∈ 𝑄, i.e, and 𝑆 ( (𝐱∗)) ≤ 𝑆 ( (𝐱)).

From the definition, we have 𝐱∗ as a global optimal solution to Problem
(SP). □

Let 𝑌 + = 𝑌 + R𝑚
+ = {𝐲 ∈ R𝑚

|𝐲 ≥ 𝐪 with 𝐪 ∈ 𝑌 }. When 𝑋 is a
convex set and  is a nonlinear function, the image set 𝑌 =  (𝑋) is not
necessarily a convex set. Therefore, instead of considering the set 𝑌 , we
consider the set 𝑌 +, which is an effective equivalent set (i.e., the set of
effective points of 𝑌 and 𝑌 + coincide), and 𝑌 + has nicer properties;

+
for example, 𝑌 is a convex set. This is illustrated in Proposition 4.2.

4 
Besides, we also define a set 𝐺 ⊂ R𝑚 is called normal if for any two
points 𝐱, 𝐱′ ∈ R𝑚 such that 𝐱′ ≤ 𝐱, if 𝐱 ∈ 𝐺, then 𝐱′ ∈ 𝐺. Similarly, a set
𝐻 ⊂ R𝑚 is called reverse normal if 𝐱′ ≥ 𝐱 ∈ 𝐻 implies 𝐱′ ∈ 𝐻 .

roposition 4.2 (Kim & Thang, 2013). We have:

(i) 𝑌𝑊𝐸 = 𝑌 +
𝑊𝐸 ∩ 𝑌 ;

(ii) 𝜕𝑌 + = 𝑌 +
𝑊𝐸 ;

(iii) 𝑌 + is a closed convex set and is a reverse normal set.

Hence, we transform Problem (OSP) into:

min  (𝐲) (OSP+)
s.t. 𝐲 ∈ 𝑌 +

𝑊𝐸 ∶ 𝐲 ∈ 𝑄.

The equivalence of problems (OSP) and (OSP+) is shown in the follow-
ing Proposition 4.3.

Proposition 4.3. If 𝐲∗ is the optimal solution of Problem (OSP), then 𝐲∗
is the optimal solution of Problem (OSP+). Conversely, if 𝐲∗ is the optimal
solution of Problem (OSP+) and 𝐪∗ ∈ 𝑌𝑊𝐸 ∩𝑄 such that 𝐲∗ ≥ 𝐪∗ then 𝐪∗
is the optimal solution of Problem (OSP).

Proof. If 𝐲∗ is the optimal solution of Problem (OSP), then 𝑆(𝐲∗) ≤
𝑆(𝐲),∀𝐲 ∈ 𝑌𝑊𝐸 ∩ 𝑄 and 𝐲∗ ∈ 𝑌𝑊𝐸 ∩ 𝑄. With each of 𝐲 ∈ 𝑌 +

𝑊𝐸 ∩ 𝑄,
ollowing the definition of 𝑌𝑊𝐸+ , there exists 𝐲 ∈ 𝑌𝑊𝐸 ∩ 𝑄 such that
𝐲 ≥ 𝐲. 𝑆 is a monotonically increasing function on 𝑌 , so 𝑆(𝐲) ≥ 𝑆(𝐲).

ence 𝑆(𝐲∗) ≤ 𝑆(𝐲),∀𝐲 ∈ 𝑌 +
𝑊𝐸 ∩ 𝑄. Moreover, 𝐲∗ ∈ 𝑌𝑊𝐸 ∩ 𝑄 means

𝐲∗ ∈ 𝑌 +
𝑊𝐸 ∩ 𝑄. We imply that 𝐲∗ is the optimal solution of Problem

(OSP+).
Conversely, if 𝐲∗ is the optimal solution of Problem (OSP+), then

𝑆(𝐲∗) ≤ 𝑆(𝐲),∀𝐲 ∈ 𝑌 +
𝑊𝐸 ∩ 𝑄. Assume that there exists 𝐪∗ ∈ 𝑌𝑊𝐸 ∩ 𝑄

such that 𝐲∗ ≥ 𝐪∗. 𝑆 is a monotonically increasing function on 𝑌 , then
𝑆(𝐪∗) ≤ 𝑆(𝐲∗) ≤ 𝑆(𝐲). With each of 𝐲 ∈ 𝑌𝑊𝐸 ∩ 𝑄, then 𝐲 ∈ 𝑌 +

𝑊𝐸 ∩ 𝑄.
Hence 𝑆(𝐪∗) ≤ 𝑆(𝐲),∀𝐲 ∈ 𝑌𝑊𝐸 ∩ 𝑄, i.e. 𝐪∗ is the optimal solution of
Problem (OSP). □

The problem (OSP+) is a difficult problem because normally, the
set 𝑌 +

𝑊𝐸 is a non-convex set. Thanks to the special properties of the
objective functions 𝑆 and 𝑌 +, we can transform the problem (OSP+)
into an equivalent problem, where the constraint set of this problem is
a convex set, as follows:

min  (𝐲) (OSP)
s.t. 𝐲 ∈ 𝑌 + ∩𝑄,

with the explicit form

min
(𝐱,𝐲)

 ( (𝐱)) (ESP)

s.t. 𝐱 ∈ 𝑋, 𝐲 ∈ 𝑄

 (𝐱) ≤ 𝐲.

Proposition 4.4. Assume 𝑄 ⊂ R𝑚
+ is a normal set. The optimal solution

sets of Problems (OSP+) and (OSP) are identical.

Proof. From Proposition 11 (Tuy, 2000), the minimum of 𝑆 over
𝑌 + ∩ 𝑄, if it exists, is attained on 𝜕𝑌 + ∩ 𝑄. Assume 𝐲∗ is the optimal
solution of Problem (OSP), then 𝐲∗ ∈ 𝜕𝑌 + ∩ 𝑄. Use Proposition 4.2,
which implies 𝐲∗ ∈ 𝑌 +

𝑊𝐸 ∩ 𝑄. Therefore, the optimal solution sets of
Problems (OSP+) and (OSP) are identical. □

Proposition 4.5. Problem (OSP) is a pseudoconvex programming problem
with respect to 𝐲, and Problem (ESP) is a pseudoconvex programming
problem with respect to (𝐱, 𝐲).

Proof. Because each 𝑓𝑖(𝐱) is a convex function on a nonempty convex
+
set 𝑋, and 𝑌 is a full-dimension closed convex set. Moreover, 𝑆 is a
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monotonically increasing function and pseudoconvex on 𝑌 . Therefore,
Problem (OSP) is a pseudoconvex programming problem with respect
to 𝐲.

If 𝑓𝑖(𝐱) are convex functions, then  (𝐱) − 𝐲 is convex constraint,
and  ( (𝐱)) is a convex function on 𝑋, 𝑌 . Hence,  ( (𝐱)) is a convex
function with respect to (𝐱, 𝐲). Furthermore, 𝑋,𝑄 are nonempty convex
sets in R𝑛 and R𝑚, respectively. Problem (ESP) is a pseudoconvex
rogramming problem with respect to (𝐱, 𝐲). □

From Proposition 4.5, Problem (ESP) is a pseudoconvex program-
ing problem. Therefore, each local minimization solution is also a

lobal minimization solution (Mangasarian, 1994). So, we can solve it
sing gradient descent algorithms, such as Thang and Hai (2022), or
eurodynamics methods, such as Bian, Ma, Qin, and Xue (2018), Liu,
ang, and Qin (2022), Xu, Chai, Qin, Wang, and Feng (2020).
These methods solely assist in locating the Pareto solution as-

ociated with the provided reference vector. In numerous instances,
owever, we are concerned with whether the resulting solution is
ontrollable and whether we are interested in more than one prede-
ined direction because the trade-off is unknown before training or
he decision-makers decisions vary. Designing a model that can be
pplied at inference time to any given preference direction, includ-
ng those not observed during training, continues to be a challenge.
urthermore, the model should be capable of dynamically adapting
o changes in decision-maker references. This issue is referred to as
ontrollable Pareto front learning (CPFL) and will be elaborated upon
n the following section.

. Controllable pareto front learning with split feasibility con-
traints

Tuan et al. (2023) was the first to introduce Controllable Pareto
ront Learning. They train a single hypernetwork to produce a Pareto
olution from a collection of input reference vectors using scalarization
roblem theory. Our study uses a weighted Chebyshev function based
n the coordinate transfer method to find Pareto solutions that align
ith how DM’s preferences change over time with  ( (𝐱) , 𝐫) ∶=
max

𝑖=1,…,𝑚

{

𝑟𝑖
(

𝑓𝑖 (𝐱) − 𝐚𝑖
)}

. Moreover, we also consider 𝑄 = 𝑄1 ×𝑄2 ×…×
𝑄𝑚 where 𝑄𝑖 is a box constraint such that 𝑓𝑖(𝐱) ∈ [𝐚𝑖,𝐛𝑖], 𝐚𝑖 ≥ 0, 𝑖 =
1,… , 𝑚. From the definition of the normal set, then 𝑄 is a normal set.

herefore, the controllable Pareto front learning problem is modeled
n the following manner by combining the properties of split feasibility
onstraints:

𝜙∗ = arg min
𝜙

E𝐫∼𝐷𝑖𝑟(𝛼)
[

max
𝑖=1,…,𝑚

{

𝐫𝑖
(

𝑓𝑖 (ℎ (𝐫, 𝜙)) − 𝐚𝑖
)}]

(LP)

s.t. ℎ (𝐫, 𝜙) ∈ 𝑋

 (ℎ (𝐫, 𝜙)) ≤ 𝐛,

where ℎ ∶  × R𝑛 → R𝑛 is a hypernetwork, and 𝐷𝑖𝑟(𝛼) is Dirichlet
distribution with concentration parameter 𝛼 > 0.

Theorem 5.1. If 𝐱∗ is an optimal solution of Problem (SMOP), then there
exists a reference vector 𝐫

(

𝐫𝑖 > 0
)

such that 𝐱∗ is also an optimal solution
of Problem (LP).

The pseudocode that solves Problem (LP) is presented in Algorithm
1. In contrast to the algorithm proposed by Tuan et al. (2023), our
approach incorporates upper bounds 𝐛 and lower bounds 𝐚 during
model training by regularizing the objective function following the
paper by Jiang and Yang (2017)

𝑓𝑖 − 𝐚𝑖 =
𝑓𝑖 − 𝐚𝑖
𝐛𝑖 − 𝐚𝑖

.

The model can weed out non-dominated Pareto solutions and so-
utions that do not meet the split feasibility constraints by adding
pper-bounds constraints during post-processing. Moreover, we pro-
ose building a hypernetwork based on the Transformer architecture
5 
instead of the MLP architecture used in other studies (Hoang et al.,
2023; Navon et al., 2020; Tuan et al., 2023). Take advantage of the
universal approximation theory of sequence-to-sequence function and
the advantages of Transformer’s Attention Block over traditional CNN
or MLP models (Cordonnier, Loukas, & Jaggi, 2019; Li, Chen, He, &
Hsieh, 2021).

5.1. Hypernetwork-based multilayer perceptron

We define a Hypernetwork-Based Multilayer Perceptron (Hyper-
MLP) ℎ is a function of the form:

𝐱𝐫 = ℎmlp(𝐫; [𝑾 , 𝒃]) (Hyper-MLP)
= 𝑊 𝑘 ⋅ 𝜎

(

𝑊 𝑘−1 … 𝜎
(

𝑊 1𝐚 + 𝑏1
)

+ 𝑏𝑘−1
)

,

ith weights 𝑊 𝑖 ∈ R𝑘𝑖+1×𝑘𝑖 and biases 𝑏𝑖 ∈ R𝑘𝑖+1 , for some 𝑘𝑖 ∈ N. In
ddition, 𝜙 = [𝑾 , 𝒃] accumulates the parameters of the hypernetwork.
he function 𝜎 is a non-linear activation function, typically ReLU,

ogistic function, or hyperbolic tangent. An illustration is shown in
ig. 4a.

heorem 5.2 (Cybenko, 1989). Let 𝜎 be any continuous sigmoidal func-
tion. Then finite sums of the form

𝑔(𝑥) =
𝑁
∑

𝑗=1
𝛼𝑗𝜎

(

𝑦T𝑗 𝑥 + 𝜃𝑗
)

,

are dense in 𝐶
(

𝐼𝑛
)

. In other words, given any 𝑓 ∈ 𝐶
(

𝐼𝑛
)

and 𝜀 > 0, there
is a sum, 𝑔(𝑥), of the above form, for which

|𝑔(𝑥) − 𝑓 (𝑥)| < 𝜀 for all 𝑥 ∈ 𝐼𝑛.

It has been known since the 1980s (Cybenko, 1989; Hornik, Stinch-
combe, & White, 1989) that feed-forward neural nets with a single
hidden layer can approximate essentially any function if the hidden
layer is allowed to be arbitrarily wide. Such results hold for a wide
variety of activations, including ReLU. However, part of the recent
renaissance in neural nets is the empirical observation that deep neural
nets tend to achieve greater expressivity per parameter than their
shallow cousins.

Theorem 5.3 (Hanin & Sellke, 2017). For every continuous function
𝑓 ∶ [0, 1]𝑑in → R𝑑out and every 𝜀 > 0 there is a Hyper-MLP ℎ with
ReLU activations, input dimension 𝑑in , output dimension 𝑑out , hidden layer
widths 𝑑in = 𝑑1, 𝑑2,… , 𝑑𝑘, 𝑑𝑘+1 = 𝑑out that 𝜀-approximates 𝑓 :

sup
𝐱∈[0,1]𝑑in

‖𝑓 (𝐱) − ℎ(𝐫)‖ ≤ 𝜀.

5.2. Hypernetwork-based transformer block

The reference vectors indicate the anticipated outcomes or signifi-
cance of the objectives. The reference vectors and weights have similar
compositional purposes but possess distinct physical interpretations
and exert diverse influences on the search process (Wang, Olhofer, &
Jin, 2017). Formally, in order for a solution to be considered Pareto
optimum, it must satisfy the condition that for any two objectives, if
the reference value for one objective is more than the reference value
for the other objective, then the corresponding objective value must
be less than the other objective value. The interdependence of the 𝐫𝑖
guarantees that the sequence-to-sequence model, equipped with the
attention mechanism, may effectively learn this connection and identify
a Pareto optimal solution that meets the desired criteria.

The paper (Yun et al., 2019) gave a clear mathematical explana-
tion of contextual mappings and showed that multi-head self-attention
layers can correctly calculate contextual mappings for input sequences.
They show that the capacity to calculate contextual mappings and the
value mapping capability of the feed-forward layers allows transform-

ers to serve as universal approximators for any permutation equivariant
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Fig. 4. Hyper-MLP (left) receives an input reference vector, Hyper-Trans (right) receives each coordinate of the input reference vector and outputs the corresponding Pareto optimal
solution.
sequence-to-sequence function. There are well-known results for ap-
proximation, like how flexible Transformer networks are at it (Yun
et al., 2019). Its sparse variants can also universally approximate any
sequence-to-sequence function (Yun et al., 2020).

A transformer block is a sequence-to-sequence function mapping
R𝑑×𝑛 to R𝑑×𝑛. It consists of two layers: a multi-head self-attention layer
and a token-wise feed-forward layer, with both layers having a skip
connection. More concretely, for an input 𝐫 ∈ R𝑑×𝑚 consisting of
𝑑-dimensional embeddings of 𝑚 tasks, a Transformer block with mul-
tiplicative or dot-product attention (Luong, Pham, & Manning, 2015)
consists of the following two layers. We propose a hypernetwork-based
transformer block (Hyper-Trans) as follows:

𝐱𝐫 = ℎtrans(𝐫;𝜙) = MultiHeadAttn(𝐫) + MLP(𝐫), (Hyper-Trans)

with:

MultiHeadAttn(𝐫) = 𝐫 +
ℎ
∑

𝑖=1
𝑾 𝑖

𝑂𝑾
𝑖
𝑉 𝐫 ⋅ 𝜎

[

(

𝑾 𝑖
𝐾𝐫

)𝑇 𝑾 𝑖
𝑄𝐫

]

,

MLP(𝐫) = 𝑾 2 ⋅ ReLU
(

𝑾 1 ⋅MultiHeadAttn(𝐫) + 𝒃1𝟏𝑇𝑛
)

+ 𝒃2𝟏𝑇𝑛 ,

where 𝑾 𝑖
𝑂 ∈ R𝑑×𝑘,𝑾 𝑖

𝑉 ,𝑾
𝑖
𝐾 ,𝑾

𝑖
𝑄 ∈ R𝑘×𝑑 ,𝑾 2 ∈ R𝑑×𝑟,𝑾 1 ∈ R𝑟×𝑑 , 𝒃2 ∈

R𝑑 , 𝒃1 ∈ R𝑟, and MLP(𝐫) is multilayer perceptron block with a ReLU
activation function. Additionally, we can also replace the ReLU function
with the GeLU function. The number of heads 𝑒 and the head size 𝑘 are
two main parameters of the attention layer, and 𝑙 denotes the hidden
layer size of the feed-forward layer.

We would like to point out that our definition of the Multi-Head
Attention layer is the same as Vaswani et al. (2017), in which they
6 
combine attention heads and multiply them by a matrix 𝑾 𝑂 ∈ R𝑑×𝑘𝑒.
One difference in our setup is the absence of layer normalization, which
simplifies our analysis while preserving the basic architecture of the
transformer.

We define transformer networks as the composition of Transformer
blocks. The family of the sequence-to-sequence functions corresponding
to the Transformers can be defined as:

 𝑒,𝑘,𝑙 ∶= {ℎ} ,

where ℎ ∶ R𝑑×𝑚 → R𝑑×𝑚 is a composition of Transformer blocks 𝑡𝑒,𝑘,𝑙 ∶
R𝑑×𝑚 → R𝑑×𝑚 denotes a Transformer block defined by an attention layer
with 𝑒 heads of size 𝑘 each, and a feed-forward layer with 𝑙 hidden
nodes. An illustration is shown in Fig. 4b.

Theorem 5.4 (Yun et al., 2019). Let F be the sequence-to-sequence
function class, which consists of all continuous permutation equivariant
functions with compact support that map R𝑑×𝑚 → R𝑑×𝑚. For 1 ≤ 𝑝 < ∞
and 𝜖 > 0, then for any given 𝑓 ∈ F, there exists a Transformer network
ℎ ∈  2,1,4, such that:

d𝑝 (ℎ, 𝑓 ) ∶=
(

∫ ‖ℎ(𝐫) − 𝑓‖𝑝𝑝 𝑑𝐫
)1∕𝑝

< 𝜖.

5.3. Solution constraint layer

In many real-world applications, there could be constraints on the
solution structure 𝐱 across all preferences. The hypernetwork model
can properly handle these constraints for all solutions via constraint
layers (Lin, Zhang, Yang, & Zhang, 2023).
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We first begin with the most common constraint: that the decision
variables are explicitly bounded. In this case, we can simply add a
transformation operator to the output of the hypernetwork:

𝐱𝐫 = 𝑐 (ℎ (𝐫, 𝜙)) ,

here ℎ (𝐫, 𝜙) is a hypernetwork and 𝑐 ∶ R𝑛 → R𝑛 is an activation
function that maps arbitrary model output ℎ (𝐫; ⋅) ∈ (−∞,∞)𝑛 into
the desired bounded range. The activation function should be differen-
tiable, and hence, we can directly learn the bounded hypernetwork by
the gradient-based method proposed in the main paper. We introduce
three typical bounded constraints and the corresponding activation
functions in the following:

Non-Negative Decision Variables. We can set 𝑐(⋅) as the rectified
linear function (ReLU):

𝐱𝐫 = 𝑐(𝐱𝐫 ) = max{0, 𝐱𝐫}.

Which will keep the values for all non-negative inputs and set the rest
to 0. In other words, all the output of hypernetwork will now be in the
range [0,∞).

Box-bounded Decision Variables. We can set 𝑐(⋅) as the sigmoid
function:

𝐱𝐫 = 𝑐(𝐱𝐫 ) =
1

1 + 𝑒−𝐱𝐫
.

Now, all the decision variables will range from 0 to 1. It is also
straightforward to other bounded regions with arbitrary upper and
lower bounds for each decision variable.

Simplex Constraints. In some applications, a fixed amount of
esources must be arranged for different agents or parts of a system.
e can use the Softmax function 𝑐(⋅) where

𝐱𝐫 = 𝑐(𝐱𝐫 ) =
𝑒𝐱𝑖𝐫

∑𝑛
𝑗=1 𝑒

𝐱𝑖𝐫
,∀𝑖 ∈ {1, 2,… , 𝑛},

uch that all the generated solutions are on the simplex {𝐱 ∈
R𝑛 ∣

∑𝑛
𝑖=1 𝐱𝑖 = 1 and 𝐱𝑖 > 0 for 𝑖 = 1,… , 𝑛}.

These bounded constraints are for each individual solution. With
he specific activation functions, all (infinite) generated solutions will
lways satisfy the structure constraints, even for those with unseen
ontexts and preferences. This is also an anytime feasibility guarantee
uring the whole optimization process.
Algorithm 1 : Hypernetwork training for Connected Pareto Front.
Input: Init 𝜙0, 𝑡 = 0, 𝐚,𝐛, 𝛼,model-type.
utput: 𝜙∗.
hile not converged do
𝐫𝑡 = 𝐷𝑖𝑟(𝛼)
if model-type is ’MLP’ then

𝐱𝐫𝑡 = ℎmlp
(

𝐫𝑡, 𝜙
)

else
𝐱𝐫𝑡 = ℎtrans

(

𝐫𝑡, 𝜙
)

end
𝜙𝑡+1 = 𝜙𝑡 − 𝜉∇𝜙

(


(

𝐱𝐫𝑡
)

, 𝐫𝑡, 𝐚
)

𝑡 = 𝑡 + 1
nd
∗ = 𝜙𝑡

Theorem 5.5. Let neural network ℎ be a set of multilayer perceptron or
transformer blocks with 𝜎 activation. Assume that 𝜙∗ is stationary point of
Algorithm 1 and ∇𝜙𝐱(�̂�;𝜙∗) ≠ 0. Then 𝐱 (�̂�) = ℎ (�̂�, 𝜙∗) is a global optimal
olution to Problem (LP), and there exists a neighborhood 𝑈 of �̂� and a
smooth mapping 𝐱(𝐫) such that 𝐱 (𝐫∗)𝐫∗∈𝑈 is also a global optimal solution
to Problem (LP).

Proof. Assume that 𝐱 (�̂�) is not a local optimal solution to Problem
(LP). Indeed, by using universal approximation Theorems 5.3 and

̂ ̂ ∗
5.4, we can approximate smooth function 𝐱 (𝐫) by a network ℎ (𝐫, 𝜙 ).

7 
Since  ( (𝐱) , 𝐫) ∶= max
𝑖=1,…,𝑚

{

𝑟𝑖
(

𝑓𝑖 (𝐱) − 𝐚𝑖
)}

is pseudoconvex on 𝑋 and

𝜙𝐱(�̂�;𝜙∗) ≠ 0, we imply:

𝐱′ ∈ 𝑋, 𝐱′ ≠ 𝐱 ∶ 𝑆(𝐱′) < 𝑆(𝐱) ⇒
[

∇𝑆(𝐱)(𝐱′ − 𝐱)∇𝜙𝐱(�̂�;𝜙∗) < 0

∇𝑆(𝐱)(𝐱′ − 𝐱)∇𝜙𝐱(�̂�;𝜙∗) > 0
. (1)

Besides 𝜙∗ is stationary point of Algorithm 1, hence:

∇𝑆(𝐱)∇𝜙𝐱(�̂�;𝜙∗) = 0,

then:

∇𝐱𝑆(𝐱) = 0. (2)

Combined with 𝐱′ ≠ 𝐱, we have:

∇𝑆(𝐱)∇𝜙𝐱(�̂�;𝜙∗)(𝐱′ − 𝐱) = 0. (3)

From (1), (2), and (3), we have 𝐱 (�̂�) = ℎ (�̂�, 𝜙∗) is a stationary point or a
local optimal solution to Problem (LP). With 𝑆 is pseudoconvex on 𝑋,
then 𝐱 (�̂�) is a global optimal solution to Problem (LP) (Mangasarian,
1994). We choose any 𝐫∗ ∈ 𝑈 that is neighborhood of �̂�, i.e. 𝐫∗ ∈  .
Reiterate the procedure of optimizing Algorithm 1 we have 𝐱 (𝐫∗) is a
global optimal solution to Problem (LP). □

Remark 5.1. Via Theorem 5.5, we can see that the optimal solution
set of Problem (SMOP) can be approximated by Algorithm 1. From
Theorem 5.1, it guarantees that any reference vector 𝐫

(

𝐫𝑖 > 0
)

of
Dirichlet distribution 𝐷𝑖𝑟(𝛼) always generates an optimal solution of
Problem (SMOP) such that split feasibility constraints. Then the Pareto
front is also approximated accordingly by mapping  (⋅) respectively.

6. Learning disconnected pareto front with hyper-transformer net-
work

The PF of some MOPs may be discontinuous in real-world appli-
cations due to constraints, discontinuous search space, or complicated
shapes. Existing methods are mostly built upon an evolutionary search-
ing algorithm, which requires massive computation to give acceptable
solutions. In this work, we introduce two transformer-based methods to
effectively learn the irregular Pareto Front, which we shall call Hyper-
Transformer with Joint Input and Hyper-Transformer with Mixture of
Experts.

6.1. Hyper-transformer with joint input

However, to guarantee real-time and flexibility in the system, we
re-design adaptive model joint input for split feasibility constraints as
follows:

𝜙∗ = arg min
𝜙

E
𝐫∼𝐷𝑖𝑟(𝛼)
𝐚∼𝑈 (0,1)

[


(


(

ℎtrans-joint (𝐫, 𝐚, 𝜙)
)

, 𝐫, 𝐚
)]

(Joint-Hyper-Trans)
s.t. ℎtrans-joint (𝐫, 𝐚, 𝜙) ∈ 𝑋


(

ℎtrans-joint (𝐫, 𝐚, 𝜙)
)

≤ 𝐛,

where 𝑈 (0, 1) is uniform distribution.

6.2. Hyper-transformer with mixture of experts

Despite achieving notable results in the continuous Pareto front, the
joint input approach fails to achieve the desired MED in the discontin-
uous scenario. We, therefore, integrate the idea from the mixture of
experts (Noam Shazeer et al., 2017) into the transformer-based model
and assume that each Pareto front component will be learned by one
expert.

In its simplest form, the MoE consists of a set of 𝑘 experts (neural
networks) 𝑒𝑖 ∶  → R𝑢, 𝑖 ∈ {1, 2,… , 𝑘}, and a gate 𝑔 ∶  → R𝑛 that

assigns weights to the experts. The gate’s output is assumed to be a
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probability vector, i.e., 𝑔(𝑥) ≥ 0 and ∑𝑘
𝑖 𝑔(𝑥)𝑖 = 1, for any 𝑥 ∈  . Given

an example 𝑥 ∈  , the corresponding output of the MoE is a weighted
combination of the experts:
𝑛
∑

𝑖
𝑒𝑖(𝑥)𝑔(𝑥)𝑖.

In most settings, the experts are usually MLP modules and the gate
𝑔 is chosen to be a Softmax gate, and then the top-𝑘 expert with
the highest values will be chosen to process the inputs associated
with the corresponding value. As shown in Fig. 5b, our model takes
𝑟𝑖, 𝑖 = 1, 2,… , 𝑚 as input, the corresponding reference vector for 𝑖th
constraints. We follow the same architecture design for the expert
networks but omit the gating mechanism by fixing the routing of 𝑟𝑖
to the 𝑖th expert. This allows each expert to specialize in a certain
region of the image space in which may lie a Pareto front. By this
setting, our model resembles a multi-model approach but has much
fewer parameters and is simpler.

We adapt this approach for Hyper-Transformer as follows:

𝜙∗ = arg min
𝜙

E
𝐫∼𝐷𝑖𝑟(𝛼)

[


(


(

ℎtrans-expert (𝐫, 𝐼𝐷, 𝜙)
)

, 𝐫, 𝐚[𝐼𝐷]
)]

(Expert-Hyper-Trans)
s.t. ℎtrans-expert (𝐫, 𝐼𝐷, 𝜙) ∈ 𝑋


(

ℎtrans-expert (𝐫, 𝐼𝐷, 𝜙)
)

≤ 𝐛,

where ℎtrans-expert (𝐫, 𝐼𝐷, 𝜙) =
[ 𝑘
∑

𝑖=1
MLP𝑖

(

ℎtrans(𝐫;𝜙)
)

]

𝑔(𝐼𝐷) with 𝑔(𝐼𝐷)

= (01,… , 1𝐼𝐷,… , 0𝑘).
Hypernetwork ℎ with architecture corresponding to Joint Input and

Mixture of Experts was illustrated in Figs. 5a and 5b. The pseudocode
that solves Problem (Joint-Hyper-Trans) and Problem (Expert-Hyper-
Trans) is presented in Algorithm 2.

Indeed, Algorithm 2 with model-type is ‘Expert’ requires the number
of experts to be determined in advance. In the current study, we are
setting the number of experts as a fixed parameter that needs to be
estimated from the beginning. To determine the number of experts, we
need to identify the number of connected components of the Pareto
Front. This is not an easy task in practice. This issue will be clarified
in our subsequent research. Although we currently have some ideas
to address this problem, one of them is using heuristic algorithms to
search for connected components. This approach has been proposed in
some works on MOEA. Coello and Sierra (2003) proposed a two-phase
algorithm: Phase 1 searches for connected components; Phase 2 finds
efficient points on the Pareto surface in each connected component.
In summary, due to the scope of the paper and the focus on the main
issue, we will study and clarify the problem you raised in subsequent
research. Another approach to this problem is through deep learning,
as presented by Zhao et al. (2021). In our MoEs architecture, the gating
mechanism is not entirely discarded; we use a rule-based gating mech-
anism similar to the Hash Layers (Roller, Sukhbaatar, Weston, et al.,
2021), where the gating function is not a neural network but simply
a hashing function. After dividing the decision space into separate
regions, we can determine the box [𝐚,𝐛] for each region and through
the box [𝐚,𝐛] to decide which expert the ray will go into.

7. Application of controllable Pareto front learning in multi-task
learning

7.1. Multi-task learning as multi-objectives optimization

Denotes a supervised dataset (𝐱, 𝐲) =
{(

𝑥𝑗 , 𝑦𝑗
)}𝑁

𝑗=1 where 𝑁 is the
number of data points. They specified the MOO formulation of Multi-
task learning from the empirical loss 𝑖(𝐲, 𝑔(𝐱,𝜽)) using a vector-valued
loss :

𝜽 = arg min (𝐲, 𝑔 (𝐱,𝜽)) ,

𝜽

t

8 
Algorithm 2 : Hyper-Transformer training for Disconnected Pareto
Front.
Input: Init 𝜙0, 𝑡 = 0, 𝐢𝐝𝐱𝐬 = [0,… , 𝑘], 𝐚,𝐛, 𝛼,model-type.
utput: 𝜙∗.
or 𝐼𝐷 in 𝐢𝐝𝐱𝐬 do
while not converged do

𝐚𝑡 = 𝐚[𝐼𝐷]
𝐫𝑡 = 𝐷𝑖𝑟(𝛼)
if model-type is ’Joint input’ then

𝐱𝐫𝑡 = ℎtrans-joint
(

𝐫𝑡, 𝐚𝑡, 𝜙𝑡
)

else
𝐱𝐫𝑡 = ℎtrans-expert

(

𝐫𝑡, 𝐼𝐷, 𝜙𝑡
)

end
𝜙𝑡+1 = 𝜙𝑡 − 𝜉∇𝜙

(


(

𝐱𝐫𝑡
)

, 𝐫𝑡, 𝐚𝑡
)

𝑡 = 𝑡 + 1
end

end
𝜙∗ = 𝜙𝑡

 (𝐲, 𝑔 (𝐱,𝜽)) =
(

1 (𝐲, 𝑔 (𝐱,𝜽)) ,… ,𝑚 (𝐲, 𝑔 (𝐱,𝜽))
)𝑇

where 𝑔 (𝐱;𝜽) ∶  × 𝛩 →  represents to a Target network with
parameters 𝜽.

7.2. Controllable Pareto front learning in multi-task learning

Controllable Pareto Front Learning in Multi-task Learning by solving
the following:

𝜙∗ = arg min
𝜙

E
𝐫∼𝐷𝑖𝑟(𝛼)
(𝐱,𝐲)∼𝑝𝐷

((𝐲, 𝑔(𝐱,𝜽𝐫 )), 𝐫, 𝐚)

s.t. 𝜽𝐫 = ℎ(𝐫, 𝜙∗)

(𝐲, 𝑔(𝐱,𝜽𝐫 )) ≤ 𝐛,

where ℎ ∶ ×𝛷 → 𝛩 represents to a hypernetwork, 𝐚 = (𝐚1,… , 𝐚𝑚), 𝐚𝑖 ≥
is the lower-bound vector for the loss vector (𝐲, 𝑔(𝐱,𝜽𝐫 )), and the

pper-bound vector denoted as 𝐛 = (𝐛1,… ,𝐛𝑚),𝐛𝑖 ≥ 0 is the desired
loss value. The random variable 𝐫 is a preference vector, forming the
trade-off between loss functions.

8. Computational experiments

The code is implemented in Python language programming and the
Pytorch framework (Paszke et al., 2019). We compare the performance
of our method with the baseline method (Tuan et al., 2023) and provide
the setting details and additional experiments. Our source code is avail-
able at https://github.com/tuantran23012000/CPFL_Hyper_Transforme
git.

8.1. Experiment details

8.1.1. Computational analysis
Hyper-Transformer consists of two blocks: the Self-Attention mecha-

nism and the Multilayer Perceptron. With Hypernetwork w/o join input
architect, we assume dimension of three matrics 𝑾 𝑄,𝑾 𝐾 ,𝑾 𝑉 is 𝑑,
number of heads is 2. Besides, we also assume the input and output
f the MLP block with 𝑑 dimension. Hence, the total parameters of the
yper-Transformer is 4𝑑2+4𝑑. The Hyper-MLP architect uses six hidden

inear layers with 𝑑 dimension input and output. Therefore, the total
arameters of Hyper-MLP is 6𝑑2 + 6𝑑.

Although the total parameters of Hyper-MLP are larger than Hyper-
ransformer, the number of parameters that need to be learned for

he MOP examples is the opposite when incorporating the Embedding

https://github.com/tuantran23012000/CPFL_Hyper_Transformer.git
https://github.com/tuantran23012000/CPFL_Hyper_Transformer.git
https://github.com/tuantran23012000/CPFL_Hyper_Transformer.git
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Fig. 5. Proposed Transformer-based Hypernetwork. Left : The Joint Input model takes reference vectors and objective function’s lower bounds corresponding to each Pareto front
component. Right : Mixture of Experts integrated model which inputs reference vectors.
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Table 1
Information of MOO problems.

Problem n m Objective function Pareto-optimal Pareto front

(CVX1) 1 2 convex convex connected
(CVX2) 2 2 convex convex connected
(CVX3) 3 3 convex convex connected
(ZDT1) 30 2 non-convex convex connected
(ZDT2) 30 2 non-convex non-convex connected
(ZDT3) 30 2 non-convex non-convex disconnected
(ZDT3∗) 30 2 non-convex non-convex disconnected
(DTLZ2) 10 3 non-convex non-convex connected
(DTLZ7) 10 3 non-convex non-convex disconnected

block. In the two architectures described in Figs. 4a and 4b, the
parameters to be learned of Hyper-Trans are:

6𝑑2 + 6𝑑 + 2𝑚𝑑 + (𝑑 + 1)𝑛,

and with Hyper-MLP are:

6𝑑2 + 6𝑑 + (𝑚 + 1)𝑑 + (𝑑 + 1)𝑛.

From there, we see that the difference in the total parameters to be
learned (𝑚 − 1)𝑑 between the Hyper-Trans and Hyper-MLP models is
insignificant. It only depends on the width of the hidden layers 𝑑 and
he number of objective functions 𝑚 ≥ 2.

.1.2. Training setup
The experiments MOO were implemented on a computer with CPU

Intel(R) Core(TM) i7-10700, 64-bit CPU @2.90 GHz, and 16 cores.
Information on MOO test problems is illustrated in Table 1.
9 
We use Hypernetwork based on multi-layer perceptron (MLP),
which has the following structure:

ℎmlp(𝐫, 𝜙) ∶ 𝐈𝐧𝐩𝐮𝐭(𝐫) → 𝐋𝐢𝐧𝐞𝐚𝐫(𝑚, 𝑑) → 𝐑𝐞𝐋𝐔 → 𝐋𝐢𝐧𝐞𝐚𝐫(𝑑, 𝑑) → 𝐑𝐞𝐋𝐔
→ 𝐋𝐢𝐧𝐞𝐚𝐫(𝑑, 𝑑) → 𝐑𝐞𝐋𝐔 → 𝐋𝐢𝐧𝐞𝐚𝐫(𝑑, 𝑑) → 𝐑𝐞𝐋𝐔
→ 𝐋𝐢𝐧𝐞𝐚𝐫(𝑑, 𝑑) → 𝐑𝐞𝐋𝐔 → 𝐋𝐢𝐧𝐞𝐚𝐫(𝑑, 𝑑) → 𝐑𝐞𝐋𝐔
→ 𝐋𝐢𝐧𝐞𝐚𝐫(𝑑, 𝑑) → 𝐑𝐞𝐋𝐔 → 𝐋𝐢𝐧𝐞𝐚𝐫(𝑑, 𝑛)
→ 𝐂𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭𝐥𝐚𝐲𝐞𝐫 → 𝐎𝐮𝐭𝐩𝐮𝐭(𝐱𝐫 ).

oward Hypernetwork based on the Transformer model, we use the
tructure as follows:

trans(𝐫, 𝜙) ∶ 𝐈𝐧𝐩𝐮𝐭(𝐫) →
⎡

⎢

⎢

⎢

⎣

𝐋𝐢𝐧𝐞𝐚𝐫(1, 𝑑)
…

𝐋𝐢𝐧𝐞𝐚𝐫(1, 𝑑)
→ 𝐂𝐨𝐧𝐜𝐚𝐭𝐞𝐧𝐚𝐭𝐞

→

[

𝐌𝐮𝐥𝐭𝐢 −𝐇𝐞𝐚𝐝𝐒𝐞𝐥𝐟 − 𝐀𝐭𝐭𝐞𝐧𝐭𝐢𝐨𝐧

𝐈𝐝𝐞𝐧𝐭𝐢𝐭𝐲𝐥𝐚𝐲𝐞𝐫

→ 𝐒𝐮𝐦 →

[

𝐌𝐋𝐏

𝐈𝐝𝐞𝐧𝐭𝐢𝐭𝐲𝐥𝐚𝐲𝐞𝐫
→ 𝐒𝐮𝐦 → 𝐋𝐢𝐧𝐞𝐚𝐫(𝑑, 𝑛)

→ 𝐂𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭𝐥𝐚𝐲𝐞𝐫 → 𝐎𝐮𝐭𝐩𝐮𝐭(𝐱𝐫 ).

.2. Evaluation metrics

Mean Euclid Distance (MED). How well the model maps prefer-
nces to the corresponding Pareto optimal solutions on the Pareto front
erves as a measure of its quality. To do this, we use the Mean Euclidean
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Table 2
Hyperparameters for training MOO problems.

Problem Hyperparameters

(CVX1) Adam optimizer, 𝛼 = 0.6, 𝑑 = 20, 𝑖𝑡𝑒𝑟 = 20000, 𝑙𝑟 = 0.001, 𝑎 = [[0, 0.8], [0.1, 0.6], [0.2, 0.4], [0.35, 0.22], [0.6, 0.1]]

(CVX2) Adam optimizer, 𝛼 = 0.6, 𝑑 = 20, 𝑖𝑡𝑒𝑟 = 20000, 𝑙𝑟 = 0.001, 𝑎 = [[0, 0.6], [0.02, 0.4], [0.16, 0.2], [0.2, 0.15], [0.4, 0.02]]
(CVX3) Adam optimizer, 𝛼 = 0.6, 𝑑 = 20, 𝑖𝑡𝑒𝑟 = 20000, 𝑙𝑟 = 0.001, 𝑎 = [[0.15, 0.2, 0.7], [0.2, 0.5, 0.6], [0.2, 0.7, 0.4], [0.35, 0.6, 0.22], [0.6, 0.1, 0.46]]
(ZDT1) Adam optimizer, 𝛼 = 0.6, 𝑑 = 20, 𝑖𝑡𝑒𝑟 = 20000, 𝑙𝑟 = 0.001, 𝑎 = [[0, 0.8], [0.1, 0.6], [0.2, 0.4], [0.35, 0.22], [0.6, 0.1]]
(ZDT2) Adam optimizer, 𝛼 = 0.6, 𝑑 = 20, 𝑖𝑡𝑒𝑟 = 20000, 𝑙𝑟 = 0.001, 𝑎 = [[0.1, 0.9], [0.1, 0.6], [0.2, 0.4], [0.35, 0.22], [0.6, 0.1]]
(ZDT3) Adam optimizer, 𝛼 = 0.6, 𝑑 = 30, 𝑖𝑡𝑒𝑟 = 20000, 𝑙𝑟 = 0.001, 𝑎 = [[0.01, 0.81], [0.16, 0.61], [0.4, 0.41], [0.62, 0.23], [0.81, 0.1]]

(ZDT3∗) Adam optimizer, 𝛼 = 0.6, 𝑑 = 10, 𝑖𝑡𝑒𝑟 = 20000, 𝑙𝑟 = 0.001, 𝑎 = [[0.8, 0.62], [0.01, 0.7]], 𝐴 = 2, 𝛾 = 3, 𝛽 = 1
3

(DTLZ2) Adam optimizer, 𝛼 = 0.6, 𝑑 = 20, 𝑖𝑡𝑒𝑟 = 20000, 𝑙𝑟 = 0.001, 𝑎 = [[0.15, 0.2, 0.7], [0.2, 0.5, 0.6], [0.2, 0.7, 0.4], [0.35, 0.6, 0.22], [0.6, 0.1, 0.46]]
(DTLZ7) Adam optimizer, 𝛼 = 0.6, 𝑑 = 20, 𝑖𝑡𝑒𝑟 = 20000, 𝑙𝑟 = 0.001, 𝑎 = [[0.62, 0.62, 0.4], [0.01, 0.62, 0.5], [0.01, 0.01, 0.82], [0.62, 0.01, 0.6]]
𝑓

w

Distance (MED) (Tuan et al., 2023) between the truth corresponding
Pareto optimal solutions ∗ = {𝑓 (𝐱∗𝐫 )} and the learned solutions ̂ =
𝑓 (ℎ(𝐫;𝜙))}.

𝐸𝐷(∗, ̂ ) = 1
|∗

|

(

|∗
|

∑

𝑖=1

‖

‖

‖

∗
𝑖 − ̂𝑖

‖

‖

‖2

)

.

Hypervolume (HV). Hypervolume (Zitzler & Thiele, 1999) is the
area dominated by the Pareto front. Therefore, the quality of a Pareto
front is proportional to its hypervolume. Given a set of 𝑘 points  =
𝑚𝑗

|𝑚𝑗 ∈ R𝑚; 𝑗 = 1,… , 𝑘} and a reference point 𝜌 ∈ R𝑚
+. The

ypervolume of  is measured by the region of non-dominated points
ounded above by 𝑚 ∈ , and then the hypervolume metric is defined
s follows:

𝑉 (𝑆) = 𝑉 𝑂𝐿

(

⋃

𝑚∈,𝑚≺𝜌
𝛱𝑚

𝑖=1
[

𝑚𝑖, 𝜌𝑖
]

)

.

Hypervolume Difference(HVD). The area dominated by the Pareto
ront is known as Hypervolume. The higher the Hypervolume, the
etter the Pareto front quality. For evaluating the quality of the learned
areto front, we employ Hypervolume Difference (HVD) between the
ypervolumes computed by the truth Pareto front  and the learned
areto front ̂ as follows:

𝑉 𝐷(∗, ̂ ) = 𝐻𝑉 (∗) −𝐻𝑉 (̂ ).

.3. Synthesis experiments

We utilized a widely used synthesis multi-objective optimization
enchmark problem in the following to evaluate our proposed method
ith connected and disconnected Pareto front. For ease of test prob-

ems, we normalize the PF to [0, 1]𝑚.

.3.1. Problems with connected Pareto front
VX1 (Tuan et al., 2023):

min
{

𝑥, (𝑥 − 1)2
}

(CVX1)
s.t. 0 ≤ 𝑥 ≤ 1.

VX2 (Binh & Korn, 1997):

min
{

𝑓1, 𝑓2
}

(CVX2)
s.t. 𝑥𝑖 ∈ [0, 5], 𝑖 = 1, 2

here

1 =
𝑥21 + 𝑥22

50
, 𝑓2 =

(𝑥1 − 5)2 + (𝑥2 − 5)2

50
.

CVX3 (Thang, Solanki, Dao, Thi Ngoc Anh, & Van Hai, 2020):

min
{

𝑓1, 𝑓2, 𝑓3
}

(CVX3)
s.t. 𝑥21 + 𝑥22 + 𝑥23 = 1

𝑥𝑖 ∈ [0, 1], 𝑖 = 1, 2, 3

where

𝑓 =
𝑥21 + 𝑥22 + 𝑥23 + 𝑥2 − 12𝑥3 + 12

,
1 14

10 
𝑓2 =
𝑥21 + 𝑥22 + 𝑥23 + 8𝑥1 − 44.8𝑥2 + 8𝑥3 + 44

57
,

𝑓3 =
𝑥21 + 𝑥22 + 𝑥23 − 44.8𝑥1 + 8𝑥2 + 8𝑥3 + 43.7

56
.

Moreover, we experiment with the additional Non-Convex MOO prob-
lems, including ZDT1-2 (Zitzler, Deb, & Thiele, 2000), and DTLZ2 (Deb,
Thiele, Laumanns, & Zitzler, 2002).
ZDT1 (Zitzler et al., 2000): It is a classical multi-objective optimization
benchmark problem with the form:

𝑓1(𝐱) = 𝑥1 (ZDT1)

2(𝐱) = 𝑔(𝐱)
[

1 −
√

𝑓1(𝐱)∕𝑔(𝐱)
]

,

here 𝑔(𝐱) = 1 + 9
𝑛−1

∑𝑛−1
𝑖=1 𝑥𝑖+1 and 0 ≤ 𝑥𝑖 ≤ 1 for 𝑖 = 1,… , 𝑛.

ZDT2 (Zitzler et al., 2000): It is a classical multi-objective optimization
benchmark problem with the form:

𝑓1(𝐱) = 𝑥1 (ZDT2)

𝑓2(𝐱) = 𝑔(𝐱)
(

1 −
(

𝑓1(𝐱)∕𝑔(𝐱)
)2
)

,

where 𝑔(𝐱) = 1 + 9
𝑛−1

∑𝑛−1
𝑖=1 𝑥𝑖+1 and 0 ≤ 𝑥𝑖 ≤ 1 for 𝑖 = 1,… , 𝑛.

DTLZ2 (Deb et al., 2002): It is a classical multi-objective optimization
benchmark problem in the form:

𝑓1(𝐱) = (1 + 𝑔(𝐱)) cos
𝜋𝑥1
2

cos
𝜋𝑥2
2

(DTLZ2)

𝑓2(𝐱) = (1 + 𝑔(𝐱)) cos
𝜋𝑥1
2

sin
𝜋𝑥2
2

𝑓3(𝐱) = (1 + 𝑔(𝐱)) sin
𝜋𝑥1
2

where 𝑔(𝐱) =
∑𝑛−2

𝑖=1
(

𝑥𝑖+2
)2 and 0 ≤ 𝑥𝑖 ≤ 1 for 𝑖 = 1,… , 𝑛.

The statistical comparison results of the connected Pareto front
problems of the MED scores between our proposed Hyper-Trans and the
Hyper-MLP (Tuan et al., 2023) are given in Table 3. These results show
that the MED scores of Hyper-Trans are statistically significantly better
than those of Hyper-MLP in all comparisons. The state trajectories of
 (𝑥) are shown in Figs. 6, 7, 8, 9, 10, and 11. These were calculated
using Hyper-Transformer and Hyper-MLP for 2D problems where 𝐱 is
generated at 𝐫 = [0.5, 0.5] and for 3D problems where 𝐱 is generated
at 𝐫 = [0.4, 0.3, 0.3]. The number of iterations needed to train the
model goes up, and the fluctuation amplitude of the objective functions
produced by the hyper-transformer goes down compared to the best
solution.

8.3.2. Problems with disconnected Pareto front
ZDT3 (Zitzler et al., 2000): It is a classical multi-objective optimization
benchmark problem with the form:

𝑓1(𝐱) = 𝑥1 (ZDT3)

𝑓2(𝐱) = 𝑔(𝐱)
(

1 −
√

(

𝑓1(𝐱)∕𝑔(𝐱)
)

−
(

𝑓1(𝐱)∕𝑔(𝐱)
)

sin 10𝜋𝑓1

)

,

where 𝑔(𝐱) = 1 + 9 ∑𝑛−1 𝑥 and 0 ≤ 𝑥 ≤ 1 for 𝑖 = 1,… , 𝑛.
𝑛−1 𝑖=1 𝑖+1 𝑖
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Table 3
We evaluate 30 random seed with lower bounds in Table 1.

Example Constraint layer Hyper-MLP (Tuan et al., 2023) Hyper-Trans (ours) Params MED⇓

(CVX1) sigmoid ✓ 5 × 5701 0.00229 ± 0.00119
✓ 5 × 5731 𝟎.𝟎𝟎𝟏𝟔𝟏 ± 𝟎.𝟎𝟎𝟏𝟐𝟗

(CVX2) sigmoid ✓ 5 × 5732 0.00353 ± 0.00144
✓ 5 × 5762 𝟎.𝟎𝟎𝟐𝟓𝟖 ± 𝟎.𝟎𝟎𝟏𝟐𝟕

(CVX3) softmax + sqrt ✓ 5 × 5793 0.01886 ± 0.00784
✓ 5 × 5853 𝟎.𝟎𝟎𝟖𝟐𝟕 ± 𝟎.𝟎𝟎𝟏𝟖𝟕

(ZDT1) sigmoid ✓ 5 × 6600 0.00682 ± 0.00385
✓ 5 × 6630 𝟎.𝟎𝟎𝟐𝟏𝟗 ± 𝟎.𝟎𝟎𝟎𝟒𝟗

(ZDT2) sigmoid ✓ 5 × 6600 0.00859 ± 0.00476
✓ 5 × 6630 𝟎.𝟎𝟎𝟔𝟗𝟐 ± 𝟎.𝟎𝟎𝟑𝟎𝟒

(ZDT3) sigmoid ✓ 5 × 3210 0.18741 ± 0.00653
✓ 5 × 3230 𝟎.𝟎𝟎𝟕𝟔𝟕 ± 𝟎.𝟎𝟎𝟒𝟏𝟒

(ZDT3∗) sigmoid ✓ 2 × 6600 0.00641 ± 0.00594
✓ 2 × 6630 𝟎.𝟎𝟎𝟑𝟗𝟏 ± 𝟎.𝟎𝟎𝟒𝟎𝟒

(DTLZ2) sigmoid ✓ 5 × 2810 0.06217 ± 0.01528
✓ 5 × 2850 𝟎.𝟎𝟏𝟎𝟖𝟑 ± 𝟎.𝟎𝟎𝟏𝟒𝟐

(DTLZ7) sigmoid ✓ 4 × 6010 0.03439 ± 0.02409
✓ 4 × 6070 𝟎.𝟎𝟏𝟏𝟏𝟔 ± 𝟎.𝟎𝟎𝟐𝟏𝟕
Fig. 6. CVX1 problem.
Fig. 7. CVX2 problem.
𝐙𝐃𝐓𝟑∗ (Chen & Li, 2023): It is a classical multi-objective optimiza-
tion benchmark problem in the form:

𝑓1(𝐱) = 𝑥1 (ZDT3∗)

2(𝐱) = 𝑔(𝐱)
(

1 −
√

(

𝑓1(𝐱)∕𝑔(𝐱)
)

−
(

𝑓1(𝐱)𝛾∕𝑔(𝐱)
)

sin𝐴𝜋𝑓 𝛽
)

,
1

11 
where 𝑔(𝐱) = 1 + 9
𝑛−1

∑𝑛−1
𝑖=1 𝑥𝑖+1 and 0 ≤ 𝑥𝑖 ≤ 1 for 𝑖 = 1,… , 𝑛. The 𝐴

determines the number of disconnected regions of the PF. 𝛾 controls the
overall shape of the PF where 𝛾 > 1, 𝛾 < 1, and 𝛾 = 1 lead to a concave,
a convex, and a linear PF, respectively. 𝛽 influences the location of the
disconnected regions.



T.A. Tuan et al. Neural Networks 179 (2024) 106571 
Fig. 8. CVX3 problem.
Fig. 9. ZDT1 problem.
Fig. 10. ZDT2 problem.
DTLZ7 (Deb et al., 2002): It is a classical multi-objective optimization
benchmark problem with the form:

𝑓1(𝐱1) = 𝑥1 (DTLZ7)
𝑓2(𝐱2) = 𝑥2
⋮

𝑓𝑚−1(𝐱𝑚−1) = 𝑥𝑚−1

𝑓 (𝐱 ) =
(1 + 𝑔(𝐱𝑚))ℎ

(

𝑓1, 𝑓2,… , 𝑓𝑚−1, 𝑔
)

,
𝑚 𝑚 6

12 
where 𝑔(𝐱𝑚) = 1 + 9
|𝐱𝑚|

∑

𝑥𝑖∈𝐱𝑚 𝑥𝑖, ℎ
(

𝑓1, 𝑓2,… , 𝑓𝑚−1, 𝑔
)

= 𝑚 −
∑𝑚−1

𝑖=1
[ 𝑓𝑖
1+𝑔

(

1 + sin 3𝜋𝑓𝑖
)]

and 0 ≤ 𝑥𝑖 ≤ 1 for 𝑖 = 1,… , 𝑛. The functional
𝑔 requires 𝑘 = |𝐱𝑚| = 𝑛 − 𝑚 + 1 decision variables.

The disparity between the Hypervolume calculated utilizing the
actual Pareto front  and the learned Pareto front ̂ of the Joint
Input model is illustrated in Table 4 and Fig. 12. The outcomes of the
Joint Input model surpass those of the Mixture of Experts structure.
However, this distinction is not statistically significant. In addition, the
hyper-transformer model with MoE still gets a much lower MED score
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Fig. 11. DTLZ2 problem.
Table 4
We evaluate 30 random seed with lower bounds in Table 1.

Example Constraint layer Model Joint input Mixture of experts Params HVD⇓ MED⇓

(ZDT3) sigmoid Hyper-Trans ✓ 22 230 0.04088 0.52587 ± 0.37795
✓ 20 250 𝟎.𝟎𝟎𝟎𝟗𝟏 𝟎.𝟐𝟒𝟕𝟖𝟕 ± 𝟎.𝟐𝟐𝟎𝟓𝟑

(ZDT3∗) sigmoid Hyper-Trans ✓ 4110 −𝟎.𝟎𝟎𝟒𝟕𝟐 0.35923 ± 0.35548
✓ 3900 −0.00466 𝟎.𝟏𝟐𝟕𝟖𝟗 ± 𝟎.𝟎𝟗𝟗𝟏𝟏

(DTLZ7) sigmoid Hyper-Trans ✓ 7990 𝟎.𝟎𝟎𝟐𝟔𝟓 0.52847 ± 0.31352
✓ 7880 0.00302 𝟎.𝟏𝟐𝟑𝟑𝟖 ± 𝟎.𝟎𝟕𝟓𝟖𝟓
Table 5
Testing hypervolume on Multi-MNIST, Multi-Fashion, and Multi-Fashion+MNIST datasets with 10 folds split.

Multi-MNIST Multi-Fashion Fashion-MNIST

Method HV ⇑ HV⇑ HV⇑ Params

Hyper-MLP (Tuan et al., 2023) 2.860 ± 0.027 2.164 ± 0.045 2.781 ± 0.039 8.66M

Hyper-Trans + ReLU (ours) 𝟐.𝟖𝟖𝟑 ± 𝟎.𝟎𝟐𝟗 2.166 ± 0.059 𝟐.𝟖𝟎𝟔 ± 𝟎.𝟎𝟒𝟏 8.66M
Hyper-Trans + GeLU (ours) 2.879 ± 0.017 𝟐.𝟏𝟗𝟔 ± 𝟎.𝟎𝟒𝟔 2.802 ± 0.049 8.66M
than the joint input when comparing disconnected Pareto front tests.
Using complex MoE designs for the Hyper-Transformer model shows
that Controllable Disconnected Pareto Front Learning could have good
future results.

8.4. Multi-task learning experiments

The dataset is split into two subsets in MTL experiments: training
and testing. Then, we split the training set into ten folds and randomly
picked one fold to validate the model. The model with the highest
HV in the validation fold will be evaluated. All methods are evaluated
with the same well-spread preference vectors based on Das and Dennis
(2000). The experiments MTL were implemented on a computer with
CPU - Intel(R) Xeon(R) Gold 5120 CPU @ 2.20 GHz, 32 cores, and GPU
- VGA NVIDIA Tesla V100-PCIE with VRAM 32 GB.

Image Classification. Our experiment involved the application of
three benchmark datasets from Multi-task Learning for the image clas-
sification task: Multi-MNIST (Sabour, Frosst, & Hinton, 2017), Multi-
Fashion (Xiao, Rasul, & Vollgraf, 2017), and Multi-Fashion+MNIST (Lin
et al., 2019). We compare our proposed Hyper-Trans model with the
Hyper-MLP model based on Multi-LeNet architecture (Tuan et al.,
2023), and we report results in Table 5.

Scene Understanding. The NYUv2 dataset (Silberman, Hoiem,
Kohli, & Fergus, 2012) serves as the basis experiment for our method.
This dataset is a collection of 1449 RGBD images of an indoor scene that
have been densely labeled at the per-pixel level using 13 classifications.
We use this dataset as a 2-task MTL benchmark for depth estimation
and semantic segmentation. The results are presented in Table 6 with
13 
Table 6
Testing hypervolume on NYUv2 dataset.

NYUv2

Method HV ⇑ Params

Hyper-MLP (Tuan et al., 2023) 4.058 31.09M

Hyper-Trans + ReLU (ours) 4.093 31.09M
Hyper-Trans + GeLU (ours) 𝟒.𝟏𝟑𝟓 31.09M

Table 7
Testing hypervolume on SARCOS dataset with ten folds split.

SARCOS

Method HV ⇑ Params

Hyper-MLP (Tuan et al., 2023) 0.6811 ± 0.227 7.1M

Hyper-Trans + ReLU (ours) 0.7107 ± 0.0236 7.1M
Hyper-Trans + GeLU (ours) 𝟎.𝟕𝟏𝟐𝟑 ± 𝟎.𝟎𝟏𝟑𝟒 7.1M

(3, 3) as hypervolume’s reference point. Our method, which includes
ReLU and GeLU activations, achieves the best HV on the NYUv2 dataset
with the same parameters as Hyper-MLP.

Multi-Output Regression. We conduct experiments using the SAR-
COS dataset (Vijayakumar, 2000) to illustrate the feasibility of our
methods in high-dimensional space. The objective is to predict seven
relevant joint torques from a 21-dimensional input space (7 tasks) (7
joint locations, seven joint velocities, and seven joint accelerations).
In Table 7, our proposed model shows superiority over Hyper-MLP in
terms of hypervolume value.
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Fig. 12. Left : Pareto Front is approximated by the Joint Input model. Right : Pareto Front is approximated by the Mixture of Experts model in example (ZDT3) (top), example
(ZDT3∗) (middle), and example (DTLZ7) (bottom).
Table 8
Testing hypervolume on ten hard-tasks CelebA dataset.

CelebA

Method HV ⇑ Params

Hyper-MLP (Tuan et al., 2023) 0.003995 11.09M

Hyper-Trans + ReLU (ours) 0.003106 11.09M
Hyper-Trans + GeLU (ours) 𝟎.𝟎𝟎𝟒𝟕𝟏𝟗 11.09M

Multi-Label Classification. Continually investigate our proposed
architecture in MTL problem, we solve the problem of recognizing 40
facial attributes (40 tasks) in 200 K face images on CelebA dataset (Liu,
Luo, Wang, & Tang, 2015) using a big Target network: Resnet18 (11M
parameters) of He, Zhang, Ren, and Sun (2016). Due to the very
14 
high dimensional scale (40 dimensions), we only test hypervolume
value on ten hard-tasks CelebA datasets, including ’Arched Eyebrows,’
’Attractive,’ ’Bags Under Eyes,’ ’Big Lips,’ ’Big Nose,’ ’Brown Hair,’ ’Oval
Face,’ ’Pointy Nose,’ ’Straight Hair,’ ’Wavy Hair.’ Table 8 shows that the
Hyper-Trans model combined with the GeLU activation function gives
the highest HV value with the reference point (1,. . . ,1).

8.5. Additional experiments

8.5.1. Number of heads and hidden dim
To understand the impact of the number of heads and the dimen-

sion of hidden layers, we analyzed the MED error based on different
numbers of heads and hidden dims in Fig. 13.

We compare the Hyper-Transformer and Hyper-MLP models based
on the MED score, where the dimension of the hidden layers 𝑑 =
[16, 32, 64, 128], and the number of heads 𝑒 = [1, 2, 4, 8, 16].
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Fig. 13. MED score of Hyper-Transformer and Hyper-MLP across the number of Heads and the dimension of Hidden layers.
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.5.2. Feature maps weight generated by hypernetworks
We compute feature maps of the first convolutional from the weights

enerated by Hyper-Trans in Fig. 14. Briefly, we averaged feature maps
f this convolutional layer across all its filter outputs. This accounts for
he weights learned by Multi-Lenet through hypernetworks.

.5.3. Exactly mapping of hypernetworks
We utilize Hypernetwork to generate an approximate efficient so-

ution from a reference vector created by Dirichlet distribution with
= 0.6. We trained all completion functions using an Adam opti-

izer (Kingma & Ba, 2014) with a learning rate of 1𝑒 − 3 and 20 000
iterations. In the test phase, we sampled three preference vectors based
on each lower bound in Table 2. Besides, we also illustrated target
points and predicted points from the pre-trained Hypernetwork in
Figs. 15, 16, and 17.

9. Conclusion and future work

This paper presents a novel approach to tackle controllable Pareto
front learning with split feasibility constraints. Additionally, we provide
mathematical explanations for accurately mapping a priority vector
to the corresponding Pareto optimal solution by hyper-transformers
based on a universal approximation theory of the sequence-to-sequence
function. Furthermore, this study represents the inaugural implemen-
tation of Controllable Disconnected Pareto Front Learning. Besides,
we provide experimental computations of controllable Pareto front
learning with a MED score to substantiate our theoretical reasoning.
The outcomes demonstrate that the hypernetwork model, based on
a transformer architecture, exhibits superior performance in the con-
nected Pareto front and disconnected Pareto front problems compared
to the multi-layer perceptron model.

Although the early results are promising, several obstacles must
be addressed. Multi-task learning studies show promise for real-world
multi-objective systems that need real-time control and involve difficul-
ties with split feasibility constraints. Nevertheless, more enhancements
are required for our suggested approach to addressing disconnected
 U

15 
Pareto Front issues. This is due to the need for the model to pos-
sess prior knowledge of the partition feasibility limitations, which
restricts the model’s capacity to anticipate non-dominated solutions.
Future research might involve the development of a resilient MoEs
hyper-transformer that can effectively adjust to various split feasibility
limitations and prevent the occurrence of dominated points. Moreover,
we expect to use penalty function algorithms to handle more complex
constraints in gradient computation (Liu et al., 2022).

CRediT authorship contribution statement

Tran Anh Tuan: Writing – review & editing, Writing – original
draft. Nguyen Viet Dung: Validation, Writing – review & editing. Tran
goc Thang: Writing – original draft, Writing – review & editing,
roject administration.

eclaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
ran Ngoc Thang reports financial support was provided by Rikkeisoft
orporation and supported by the Center for Digital Technology and
conomy (BK Fintech), Hanoi University of Science and Technology.
f there are other authors, they declare that they have no known
ompeting financial interests or personal relationships that could have
ppeared to influence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

The authors thank the anonymous peer reviewers and the editor
or their constructive comments which helped to improve the paper.
his work was funded by Rikkeisoft Corporation and supported by
he Center for Digital Technology and Economy (BK Fintech), Hanoi
niversity of Science and Technology, Viet Nam.



T.A. Tuan et al.

Fig. 14. Feature maps of Target network with weights that Hyper-Transformer generated.
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Fig. 15. The Controllable Pareto Front Learning by Split Feasibility Constraints method achieves an exact mapping between the predicted solution of Hypernetwork and the truth
solution, as illustrated in Examples (CVX1) (top), (CVX2) (middle), and (CVX3) (bottom).
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Fig. 16. The Controllable Pareto Front Learning by Split Feasibility Constraints method achieves an exact mapping between the predicted solution of hypernetwork and the truth
solution, as illustrated in Examples (ZDT1) (top), (ZDT2) (middle), and (DTLZ2) (bottom).
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Fig. 17. The Controllable Pareto Front Learning by Split Feasibility Constraints method achieves an exact mapping between the predicted solution of Hypernetwork and the truth
solution, as illustrated in Examples (DTLZ7) (top), (ZDT3) (middle), and (ZDT3∗) (bottom).
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